OpenSSL Certificate Authority Part3


Posted by Christian Weiß on June 16, 2018

OpenSSL Certificate Authority Part3

We will be signing certificates using our intermediate CA. You can use these signed certificates in a variety of situations, such as to secure connections to a web server or to authenticate clients connecting to a service.

The steps below are from your perspective as the certificate authority. A third-party, however, can instead create their own private key and certificate signing request (CSR) without revealing their private key to you. They give you their CSR, and you give back a signed certificate. In that scenario, skip the genrsa and req commands.

VirtualBox

Sign server certificate with OpenSSL

Create a key

Our root and intermediate pairs are 4096 bits. Server and client certificates normally expire after one year, so we can safely use 2048 bits instead.

Although 4096 bits is slightly more secure than 2048 bits, it slows down TLS handshakes and significantly increases processor load during handshakes. For this reason, most websites use 2048-bit pairs.

If you’re creating a cryptographic pair for use with a web server (eg, Apache), you’ll need to enter this password every time you restart the web server. You may want to omit the -aes256 option to create a key without a password.

cd /home/wechris/ca
openssl genrsa -aes256 \
      -out intermediate/private/www.example.com.key.pem 2048
chmod 400 intermediate/private/www.example.com.key.pem

Create a certificate

Use the private key to create a certificate signing request (CSR). The CSR details don’t need to match the intermediate CA. For server certificates, the Common Name must be a fully qualified domain name (eg, www.example.com), whereas for client certificates it can be any unique identifier (eg, an e-mail address). Note that the Common Name cannot be the same as either your root or intermediate certificate.

cd /home/wechris/ca
openssl req -config intermediate/openssl.cnf \
      -key intermediate/private/www.example.com.key.pem \
      -new -sha256 -out intermediate/csr/www.example.com.csr.pem

Enter pass phrase for www.example.com.key.pem: secretpassword
You are about to be asked to enter information that will be incorporated
into your certificate request.
-----
Country Name (2 letter code) [XX]:DE
State or Province Name []:Bavaria
Locality Name []:Bamberg
Organization Name []:Development
Organizational Unit Name []:IchAG
Common Name []:www.example.com
Email Address []:

To create a certificate, use the intermediate CA to sign the CSR. If the certificate is going to be used on a server, use the server_cert extension. If the certificate is going to be used for user authentication, use the usr_cert extension. Certificates are usually given a validity of one year, though a CA will typically give a few days extra for convenience.

cd /home/wechris/ca
openssl ca -config intermediate/openssl.cnf \
      -extensions server_cert -days 375 -notext -md sha256 \
      -in intermediate/csr/www.example.com.csr.pem \
      -out intermediate/certs/www.example.com.cert.pem
chmod 444 intermediate/certs/www.example.com.cert.pem

The intermediate/index.txt file should contain a line referring to this new certificate.

V 1903171816042 1000 unknown ... /CN=www.example.com

Verify the certificate

openssl x509 -noout -text \
      -in intermediate/certs/www.example.com.cert.pem

The Issuer is the intermediate CA. The Subject refers to the certificate itself.

Signature Algorithm: sha256WithRSAEncryption
    Issuer: C=DE, ST=Bavaria,
            O=Development, OU=IchAG,
            CN=wechris Intermediate CA
    Validity
        Not Before: Mar  7 18:52:05 2018 GMT
        Not After : Mar 17 18:52:05 2019 GMT
    Subject: C=DE, ST=Bavaria, L=Bamberg,
             O=Development, OU=IchAG,
             CN=www.example.com
    Subject Public Key Info:
        Public Key Algorithm: rsaEncryption
            Public-Key: (2048 bit)

The output will also show the X509v3 extensions. When creating the certificate, you used either the server_cert or usr_cert extension. The options from the corresponding configuration section will be reflected in the output.

X509v3 extensions:
    X509v3 Basic Constraints:
        CA:FALSE
    Netscape Cert Type:
        SSL Server
    Netscape Comment:
        OpenSSL Generated Server Certificate
    X509v3 Subject Key Identifier:
        B1:B8:88:48:64:B7:45:52:21:CC:35:37:9E:24:50:EE:AD:58:02:B5
    X509v3 Authority Key Identifier:
        keyid:69:E8:EC:54:7F:25:23:60:E5:B6:E7:72:61:F1:D4:B9:21:D4:45:E9
        DirName:/C=DE/ST=Bavaria/L=Bamberg/O=IchAG/OU=Developemnt/CN=wechris CA
        serial:10:00

    X509v3 Key Usage: critical
        Digital Signature, Key Encipherment
    X509v3 Extended Key Usage:
        TLS Web Server Authentication

Use the CA certificate chain file we created earlier (ca-chain.cert.pem) to verify that the new certificate has a valid chain of trust.

openssl verify -CAfile intermediate/certs/ca-chain.cert.pem \
      intermediate/certs/www.example.com.cert.pem

www.example.com.cert.pem: OK

Deploy the certificate

You can now either deploy your new certificate to a server, or distribute the certificate to a client. When deploying to a server application (eg, Apache), you need to make the following files available:

If you’re signing a CSR from a third-party, you don’t have access to their private key so you only need to give them back the chain file (ca-chain.cert.pem) and the certificate (www.example.com.cert.pem).

References:

https://jamielinux.com/docs/openssl-certificate-authority/index.html

https://raymii.org/s/tutorials/OpenSSL_command_line_Root_and_Intermediate_CA_including_OCSP_CRL%20and_revocation.html